

Quantified Exponence Constraints and the Typology of Exponence

Yifan Yang yangyifa@usc.edu

1. Overview

- This paper examines the mapping between morphosyntactic structures and their corresponding phonological materials (i.e. their exponents), and
- proposes a mechanism that gives a unified account to various phenomena and predicts the full range of typology.

2. A typology of exponence

 languages exhibit various types of mapping between morphosyntactic information and phonological information:

Туре	Attested Language
a. Phonologically Conditioned Suppletive Allomorphy (PCSA)	Moroccan Arabic
b. Multiple exponence (ME)	Tamazight Berber
c. Both PCSA and ME	Lower Jubba Maay
d. Partial non-realization	Bukusu
e. Zero realization	English

Examples

a) Moroccan Arabic: 3rd person singular masculine prenominal clitic (Harrel 1962, Mascoró 2007)

	stem	gloss	3p.sg.m	gloss
a.	xt ^s a	'error'	xt ^c a-h	'his error'
b.	ktab	'book'	kta b-u	'his book'

b) Tamazight Berber: 2nd person marker (Xu 2007, cf. Noyer 1992, Stump 2001)

feature(s)	{2}	$\{2, sg.\}$	{2, pl.}
exponent	t-	-d	-m

- e.g. 2nd person masculine singular of dawa ('cure'):
 t-dawa-d, but *dawa-d
- c) Lower Jubba Maay: plural (Paster 2006, 2010)

	singular	plural	gloss
a.	liw a	liwa- <mark>yal</mark>	'lions'
b .	eey	eey-o, eey-yal, eey-o-yal	'dogs'

- vowel-final nouns can only take -yal
- has both properties of PCSA and ME
- d) Bukusu: 1st person present (Odden 2005)

	stem	gloss	1st person present	gloss
8	a. teexa	'cook'	$/N$ -teexa/ \rightarrow [ndeexa]	'I cook'
1	o. xala	'cut'	$/N$ -fuma $/ \rightarrow [fuma]$	'I cut'

3. Claim

- 1) The phenomena presented above are inherently related.
- 2) There is a mechanism at morphology-phonology interface that can give rise to various types of exponence.

4. Proposal

1) The organization of the lexicon

the lexicon:

- morphosyntactic features (M information)
 phonological exponents (P information)
- M-R-P (cf. Halle and Marantz 1993, Trommer 2001, Walker and Feng 2004, Wolf 2008, Kimper 2009)

 The structures above will be called the Lexical Representation (LR)

2) Two Gen functions

- Intermediate-GEN (i-GEN): operates on *LR* and generates a set of forms containing various permutations of the exponents, which are called the *Exponent-Chosen Representation (ER)*. (cf. Unification-GEN in Sprouse 1997)
- Familiar **GEN** in Classic OT operates on *ER* and generates *Surface Representation (SR)*.

- 3) Quantified Exponence Constraints (for LR-ER)
- Max-∀LE(F): All the phonological information provided in LR must be preserved in ER.
- Max-∃LE(F): Some of the phonological information provided in LR must be preserved in ER.

5. Constraints in action

1) PCSA: Max-∀LE(F) being dominated by markedness

- Moroccan Arabic
- ONSET (ONS) >> NOCODA (*C] σ) (xt $^{\varsigma}$ ah > xt $^{\varsigma}$ a.u)
- Schema: Max-∃LE(F) >> Markedness >> Max-∀LE(F)

$\sqrt{\text{ERROR}}$ 31 \Re 9 $/\text{xt}^2$ a/ /-h/	P.M.SG R R /-u/	MAX- ∃LE (3P.M.SG)	Ons	*STRUC-σ	*C]σ	MAX- ∀LE (3P.M.SG)
a. /xt ^ç a-hu	$\sqrt{[xt^{\varsigma}a.\mathbf{hu}]}$		 	2W	L	L
☞ b. /xt ^s a-h	$\int \left[xt^{\varsigma}a\mathbf{h}\right]$		 	1	1	1
c. /xt ^s a-u	$\int [xt^{\varsigma}a.\mathbf{u}]$		1W	2W	L	1
d. /xt ^s a	[xt ^s a]	1 W	 	1	L	2

2) Both properties of PCSA and ME: Max-∀LE(F) interleaved with markedness

- Lower Jubba Maay:
- '-yal' is viewed as the strong/default marker, which should be favored (cf. Harris 2017, Caballero and Inkelas 2013) (PRIORITY)
- '-yal' can be analyzed as a clitic (Paster 2006), which suggests it should be the outer marker. (ALIGN)
- The variation shown in section 2 can be achieved by Partially Ordered Constraints (Anttila 1997)

• • •			• • • • •			
	√CAT ! ℜ /mukulal/	PLURAL	ALIGN -yal	*C]σ	Max- ∀LE(pl)	PRIORITY
Ta.	mukulal-o	mu.ku.la.lo			1	1
₽b.	mukulal-yal	mu.ku.lal.yal		2	1	
☞c.	mukulal-o-yal	mu.ku.la.lo.yal		1		1
d.	mukulal-yal-o	mu.ku.lal.ya.lo	1	1		1

- a) NoCoda >> Max-\(\forall LE(F)\), Priority: mukulal-\(\oldsymbol{o}\)
- b) PRIORITY >> MAX-VLE(F), NoCoda: mukulal-yal
- c) Max-VLE(F) >> NoCoda, Priority: mukulal-o-yal

6. Typological predictions

1) Typological test

- The typology is tested by a toy language resembling Moroccan Arabic:
 - two exponents of certain feature F: /-tel/ and /-is/
 - /bada-tel/ (vowel-final) vs. /bad-is/ (consonant-final)
- Constraints: Onset (M1), NoCoda (M2), *Struc-σ (M3), I-Contig, and Max-IO (collectively Faith-IO)

2) Results

- 15 grammars are predicted by OT-Soft (Staubs et al. 2012)
- All grammars can be categorized as 7 groups
- the grammars within each group exhibit the same pattern of exponence, only differ in markedness
- 5 groups out of 7 are attested (cover 12 grammars); the languages below can represent each group:

Туре	Grammar	Attested Language
a. PCSA	Max-3LE(F), FAITH-IO, M1 >>	Moroccan Arabic
a. PC3A	M2, M3 >> MAX-∀LE(F)	(3p.m.sg)
b. ME	Max-∃LE(F), Max-∀LE(F), M1,	Tamazight Berber
D. IVIE	FAITH-IO >> M2, M3	(2person)
c. Partial ME (both	Max-3LE(F), FAITH-IO, M1 >> M2	Lower Jubba Maay
ME and PCSA)	>> Max-∀LE(F) >> M3	(plural)
d. Partial non-	FAITH-IO, M1 >> M2 >> MAX-	Bukusu
realization	$\exists LE(F)$, $Max-\forall LE(F) >> M3$	(1 person present)
e. Zero realization	FAITH-IO, M1, M3 >> M2, MAX-	English
e. Zero realization	∃LE(F), MAX-∀LE(F)	(e.g. 1 person present)

Unattested groups

output (ER→SR)	utput (ER->SR) Grammar	
bada-is → ba.da	MAX-3LE(F), I-CONTIG, ONSET, NOCODA >> *STRUC >> MAX-	
bad-is → ba.di	IO, MAX-∀LE(F)	
bada-is → ba.das	MAX-3LE(F), ONSET, *STRUC >> MAX-IO, MAX-VLE(F) >>	
bad-tel → bad	NoCoda, I-contig	

7. Alternative approaches

- 1) Realizational Optimality Theory (Realizational OT) (Xu 2007)
- the phonological information in encoded in realizational constraints, e.g. {2p, sg}:-d
- Multiple exponence is favored by ranking *FEATURESPLIT lower than the realizational constraints:
 [t-dawa-d]: {2p,sg}:-d, {2p}:t- >> *FEATURESPLIT
- Works well for multiple exponence, but it can be problematic for phonological variation:

	/ba/ + PLURAL	{pl.}:-sa	$*V_SV$	IDENT(VOICE)
a.	ba-sa		1	
b.	ba-za	?	 	?

2) Optimal Construction Morphology (OCM) (Caballero and Inkelas 2013, Inkelas

- OCM is an incremental and serial model, which spells out morphs incrementally towards the target meaning.
- One important difference between OCM and the approach in this paper can be identified:
- OCM implements a serial approach when analyzing
 PCSA and ME while the current proposal uses parallel evaluation.
- The look ahead effect of less-peripheral allomorphs would pose a problem for the serial construction:
- E.g. a hypothetical language (Wolf 2008)

/peto - {za, xof} - u/ za + C-initial marker [ROOT]-[GENDER]-[NUMBER] xof + V-initial marker

References – See handout