Combinative Markedness in Three-consonant Clusters

Rachel Walker and Yifan Yang University of Southern California

OCP XVI University of Verona January 16, 2019

rwalker@usc.edu yangyifa@usc.edu

1. Introduction

Introduction

- Moenat Ladin a minority Romance language
- Phonotactics of prevocalic clusters show asymmetrical patterns:

Well attested:

- sibilant + plosive (SC-), e.g. sparpagna
- o plosive + rhotic liquid (Cr-), e.g. *pra*
- o sibilant + plosive + rhotic liquid (SCr-), e.g. **spr**igolar

Less common

plosive + lateral liquid (Cl-), e.g. plota

Exceedingly rare

sibilant + plosive + lateral liquid (SCI-)

What grammatical mechanism gives rise to these asymmetrical patterns?

Introduction

- Last phonetic/phonological investigation focused on Moenat Ladin of which we are aware is by Heilmann (1955).
- We investigated the phoneme system (Yang et al. in prep) and phonotactics via interviews and acoustic recordings.

While our findings were similar to those of Heilmann in broad strokes; we seek here particularly to

- contribute an enriched and updated characterization of prevocalic cluster phonotactics, and
- 2. examine theoretical implications for cumulative markedness effects in three-consonant clusters, evidenced by acoustic data.

2. Ladin Phonotactics

2.1 The Ladin Language

Ladin (aka Rhaeto-Romance) is a minority Romance language spoken in northeastern Italy.

31,000 speakers (2013); threatened status (*Ethnologue*, Simons & Fennig 2018).

Data reported here is based on recent fieldwork in the Fassa (Faschia) Valley in Trentino; 8,100 speakers in this region (2011 census; Moroder 2016).

2.1 The Ladin Language

Ladin is spoken in 5 valleys in the Dolomites; a different variety is spoken in each valley, and valleys have subvarieties.

Moenat is the Fascian subvariety associated with Moena.

2.1 The Ladin Language

Ladin is spoken in 5 valleys in the Dolomites; a different variety is spoken in each valley, and valleys have subvarieties.

Moenat is the Fascian subvariety associated with Moena.

	Bilabial	Labio- dental	Dental/ Alveolar	Retroflex	Palatal	Velar
Plosive	p b		t d			k g
Affricate				tş dz		
Nasal	m		n		'n	
Trill			r			
Fricative		f v	s z	\$ Z		
Lateral Appr.			I			

	Bilabial	Labio- dental	Dental/ Alveolar	Retroflex	Palatal	Velar
Plosive	p b		t d			k g
Affricate				tş dz		
Nasal	m		n		'n	
Trill			r			
Fricative		f v	s z	\$ Z		
Lateral Appr.			I			

	Bilabial	Labio- dental	Dental/ Alveolar	Retroflex	Palatal	Velar
Plosive	p b		t d			k g
Affricate				tş dz		
Nasal	m		n		'n	
Trill			r			
Fricative		f v	s z	şζ		
Lateral Appr.			I			

	Bilabial	Labio- dental	Dental/ Alveolar	Retroflex	Palatal	Velar
Plosive	p b		t d			k g
Affricate				tş dz		
Nasal	m		n		'n	
Trill			r			
Fricative		f v	s z	\$ Z		
Lateral Appr.			I			

2.4 Moenat Ladin Onset Phonotactics - Obstruent + Liquid

C onset

Any singleton consonant can form an onset.

Cr onset (C = plosive)

Any plosive plus [r] can form an onset.

Fr onset (F = labiodental fricative)
[fr] can form an onset, but [vr] is
unattested.

[pr]	[pra]	'meadow'	pra
[br]	[brats]	'arm'	br ac
[tr]	[troˈar]	'to find'	tr oar
[dr]	[drak]	'dragon'	dr ach
[kr]	[ˈkreda]	ʻclay'	cr eda
[gr]	[gros]	ʻbig'	gr os
[fr]	[freit]	'cold'	fr eit
[vr]			

2.2 Moenat Ladin Onset Phonotactics - Obstruent + Liquid

CI onset (C = plosive)

Any plosive plus [l] can form an onset, except for [tl] and [dl].

FI onset (F = labiodental fricative)

[fl] can form an onset, but not [vl].

Summary so far

X − tl, dl, vr, vl

[pl]	[ˈplɔta]	'plate'	pl ota
[bl]	[blok]	'block'	bl och
[tl]			
[dl]			
[kl]	[ˈklampera]	'clip for tree logs'	cl àmpera
[gl]	[gloˈrjet]	'kiosk, stand'	gl oriet
[fl]	[fliŋk]	'finch'	fl inch
[vl]			

2.2 Moenat Ladin Onset Phonotactics - Sibilant + X

Sibilant fricatives in prevocalic clusters

A preconsonantal sibilant fricative is **retroflex** and it **agrees in voicing** with the following consonant. (e.g. [**sp**arpa'na] vs. [**zb**i'ofa])

SX prevocalic clusters (S = sibilant fric.), X can be various:

- sibilant plus liquid
- sibilant plus nasal
- ✓ sibilant plus nonsibilant fricative
- sibilant plus plosive

Rise in sonority

Plateau or fall in sonority

2.2 Moenat Ladin Onset Phonotactics - Sibilant + X

SX prevocalic clusters (S = sibilant fric.)

Rise in sonority

- sibilant plus nasal

[zr]	[z̞raˈmar]	'to cut off branches from a tree'	sr amar
[zl]	[zlonˈdzar]	'to make longer'	sl ongiar
[zm]	[zmaus]	'butter'	sm auz
[zn]	[znigoˈla]	'cloudy'	sn igolà
[zɲ]	[zɲaoˈlar]	'to whine'	sgn aolar

2.2 Moenat Ladin Onset Phonotactics - Sibilant + X

SX prevocalic clusters (S = sibilant fric.)

Plateau or fall in sonority

- sibilant plus nonsibilant fricative
- sibilant plus plosive

But Sd unattested except in Sdr

[şf]	[sfadiˈada]	'effort'	sf adiada
[zv]	[zvamˈpi]	'careless'	sv ampì
[sp]	[sparpaˈɲa]	'widespread'	sp arpagna
[zb]	[zbiˈofa]	'foam'	sb iofa
[st]	[stinf]	'sock'	st inf
[zd]			
[şk]	[ˈʂkazੑi]	'almost'	sc aji
[zg]	[zgoˈlar]	'to fly'	sg olar

2.2 Moenat Ladin Onset Phonotactics - Sibilant + X + Y

SXY prevocalic clusters

[spr]	[sprigoˈlar]	'to frighten'	spr igolar
[zbr]	[zbralˈdʒar]	'to scream'	sbr algiar
[str]	[stroˈzet]	'sledding'	stroset
[zdr]	[ˈzdragola]	'a large quantity'	sdr agola
[şkr]	[ˈskrɔza]	'shell'	scr osa
[zgr]	[zgriˈfjon]	'scratch'	sgr ifion
[şfr]	[sfreˈar]	'to rub'	sfr ear
[zvr]			

[spl]	[splen dor]	'splendor'	spl endor
[zbl]			
[stl]			
[zdl]			
[şkl]	[sklenken]	'unsteady'	scl enchen
[zgl]			
[sfl]	[sfladʒeˈlar]	'scourge'	sfl agelar
[zvl]			

2.2 Moenat Ladin Onset Phonotactics - Interim Summary

Interim Summary: Prevocalic clusters

$$\checkmark$$
 – Cr, Cl, fr, fl (C = plosive)

OCP restrictions involving laterals

No consonants after [v]

$$X - vr, vl$$

S before any nonsibilant singleton or cluster

Except SCI, which is rare or absent even though CI is attested

2.2 Moenat Ladin Onset Phonotactics - Frequency

Further investigation - Frequency of cluster combinations

A fully documented lexicon of Moenat Ladin is not yet available, but based on our fieldwork with a Moenat consultant, we verified that:

- [kl-, gl-]: very rare
- [spl-] and [skl-]: one word only each; an Italian borrowing (splendor) and a word in a Moenat dictionary that was unfamiliar to our consultant (sclenchen)
- [sfl-]: only two words identified (*sflagel*, *sflagelar*)
- [zbl-, zgl-, zvl-]: unattested

2.2 Moenat Ladin Onset Phonotactics - Summary

Based on our fieldwork and description in literature:

	Labial		Coronal		Dorsal		Labiodental	
Cr	pr	br	tr	dr	kr	gr	fr	vr
CI	pl	bl	tl	dl	kl	gl	fl	vl
SCr	şpr	zุbr	ştr	zdr	şkr	zgr	şfr	zvr
SCI	şpl	zbl	ştl	zdl	şkl	zgl	şfl	zvl

- *CI* clusters are less frequent in general (Heilmann 1955)
- **SCI-** is even more marked

- Well-attested
- Rare
- Unattested

2.2 Moenat Ladin Onset Phonotactics - Summary

Based on our fieldwork and description in literature:

	Labial		Coronal		Do	Dorsal		Labiodental	
Cr	pr	br	tr	dr	kr	gr	fr	vr	
CI	pl	bl	tl	dl	kl	gl	fl	vl	
SCr	şpr	zbr	ştr	zdr	şkr	zgr	şfr	zvr	
SCI	şpl	zbl	ştl	zdl	şkl	zgl	şfl	zvl	

- Well-attested
- Rare
- Unattested

- *CI* clusters are less frequent in general (Heilmann 1955) Why?
- SCI- is even more marked Why?

Possible organization of pre-consonantal Cs **external** to the syllable?

> Acoustic investigation

3. Acoustic Study

3.1. Cluster organization and C-Center effect

- Diagnosis of Cs belonging to a complex onset: <u>temporal coordination of the consonants in a prevocalic cluster with a later **anchor** point, e.g. end of V.</u>
- Complex onset shows C-centering effects
 (Browman & Goldstein 1988, 2000; Marin & Pouplier 2010; Marin 2011; Pouplier 2012, etc.)
- Consonants external to the onset do not show C-centering effects (Shaw et al. 2009, 2011; Hermes et al. 2013; Ruthan et al. 2018, etc.; on extrasyllabicity see e.g. Green 2003)

3.1. Cluster organisation and C-Center effect

Previous articulatory studies on English and Italian prevocalic clusters

	English	Italian
Obs+Liquid	complex onset	complex onset
(e.g. pr-)	(C-Center)	(C-Center)
S + Obs	complex onset	S external
(e.g. sp-)	(C-Center)	(Right-edge)
S + Obs + Liq (e.g. spl-)	complex onset (C-Center)	-

English (adapted from Browman & Goldstein 1988)

Italian (adapted from Hermes et al. 2013)

Anchor

Anchor

3.1. Cluster organization and C-Center effect

Previous articulatory studies on English and Italian prevocalic clusters

What about Ladin?

- Do Ladin consonant clusters behave like English or Italian, or something else?
- Do Cl- and SCl- exhibit special patterns of temporal coordination? (C = plosive)

English (adapted from Browman & Goldstein 1988)

Italian (adapted from Hermes et al. 2013)

3.1. Cluster organization and C-Center effect

Hypotheses

- H1: Sibilant in SC(X)- is external to the onset (R-anchored), similar to Italian.
- H2: Cr is a complex onset (C-centering), while Cl organization is less stable or C is external in Cl (R-anchored);

- Selkirk & Durvasula (2013) have developed a technique using <u>acoustic data</u> to study the temporal coordination between segments (see also Ruthan et al. 2018).
- We applied this technique to conduct a pilot investigation of the coordination of sibilants in prevocalic clusters in Moenat Ladin:

stimuli design - recording - acoustic analysis

Stimuli

- 8 minimal sets (real and nonce words)
 - 4 sets for 'R-series': C ~ r ~ Cr ~ SC ~ SCr
 - e.g. ['pita] ~ ['rita] ~ ['prita] ~ ['spita] ~ ['sprita]
 - 3 sets for 'L-series': C ~ I ~ CI ~ SC
 - e.g. ['bata] ~ ['lata] ~ ['zlata] ~ ['zbata]
 - 1 set for CI ~ SCI
 - [plen'dor] ~ [splen'dor] (splendor is only 'spl-' word in Moenat)

Method

- Data were collected in Fassa Valley in January 2019.
- 1 native speaker of Moenat Ladin (< 30 in age)
- Each word has 12 repetitions (randomized), embedded in a carrier sentence
 - "dimo _____, Maria" ("say ____, Maria")
- Recordings were made using Praat 6.0.43, with a Sennheiser microphone headset.

Analysis

- Each token was segmented in Praat
- The following crucial time points were marked in textgrid:
 - Left edge: end of the preceding vowel
 - Right edge: release of the last prevocalic consonant
 - Anchoring point: end of the following vowel

C-Center: mean of midpoints of Cs in a cluster

Analysis (continued)

- Left-to-anchor duration, right-to-anchor duration, and center-to-anchor duration are calculated for each token
- Relativized Standard Deviation (RSD) of the durations was calculated for each comparison:
 - r ~ Cr
 - C~SC
 - Cr ~ SCr
 - I ~ CI
 - CI ~ SCI

• r ~ Cr

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
rita ~ prita	6.146	5.009	10.403
rama ~ brama	13.912	7.939	12.166
raz ~ gras	11.235	9.350	10.412
rata ~ brata	12.328	10.066	10.616

Plot: rama ~ brama

• r ~ Cr

C-Center effect (complex onset)

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
rita ~ prita	6.146	5.009	10.403
rama ~ brama	13.912	7.939	12.166
raz ~ gras	11.235	9.350	10.412
rata ~ brata	12.328	10.066	10.616

• C ~ SC

Plot: pita ~ spita

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
pita ~ spita	17.190	13.175	9.216
bama ~ sbama	4.206	5.207	6.778
gas ~ sgas	13.004	10.471	6.075
bata ~ sbata	10.706	8.728	8.243
cossa ~ scoza	10.605	9.019	8.243
bos ~ sboz	11.711	7.862	5.611

• C ~ SC

Right-edge effect (external S)

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
pita ~ spita	17.190	13.175	9.216
bama ~ sbama	4.206	5.207	6.778
gas ~ sgas	13.004	10.471	6.075
bata ~ sbata	10.706	8.728	8.243
cossa ~ scoza	10.605	9.019	8.243
bos ~ sboz	11.711	7.862	5.611

• Cr ~ SCr

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
prita ~ sprita	17.514	12.729	10.569
brama ~ sbrama	9.097	3.567	5.677
gras ~ sgras	12.306	9.269	7.093
brata ~ sbrata	14.885	12.059	10.346

Plot: prita ~ sprita

• Cr ~ SCr

Right-edge effect (external S)

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
prita ~ sprita	17.514	12.729	10.569
brama ~ sbrama	9.097	3.567	5.677
gras ~ sgras	12.306	9.269	7.093
brata ~ sbrata	14.885	12.059	10.346

• | ~ C|

Plot: lata ~ blata

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
lata ~ blata	9.798	8.216	6.450
lossa ~ clossa	5.960	5.856	10.331
los ~ blos	12.715	9.568	9.134

(Right-edge effect? variation?)

• | ~ C|

Right-edge effect? (external C?)

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
lata ~ blata	9.798	8.216	6.450
lossa ~ clossa	5.960	5.856	10.331
los ~ blos	12.715	9.568	9.134

(Right-edge effect? variation?)

• CI ~ SCI

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
plendor ~ splendor	15.661	11.773	7.905

Plot: *plendor* ~ *splendor*

• CI ~ SCI

Right-edge effect (external S)

RSD value for each doublet (least RSD, least variability)

	left edge	c-center	right edge
plendor ~ splendor	15.661	11.773	7.905

Summary

	Results	Notes
c ~ sc	Right-edge effect	except for <i>bama</i> ~ <i>sbama</i>
Cr ~ SCr	Right-edge effect	except for <i>brama</i> ~ <i>sbrama</i>
CI ~ SCI	Right-edge effect	
r ~ Cr	C-center effect	
I ~ CI	Right-edge effect?	seem to show variation

Tendency shown in the results; Hypothesis 1

	Results
C~SC	Right-edge effect
Cr ~ SCr	Right-edge effect
CI ~ SCI	Right-edge effect
r ~ Cr	C-center effect
I ~ CI	Right-edge effect?

 Sibilant could be viewed as an external element of syllable structure, similar to Italian.

Tendency shown in the results; Hypothesis 2

	Results
C~SC	Right-edge effect
Cr ~ SCr	Right-edge effect
CI ~ SCI	Right-edge effect
r ~ Cr	C-center effect
I ~ CI	Right-edge effect?

- Cr could be viewed as a complex onset
- CI behaves differently from Cr
- Potential right-alignment effect of Cl suggestive of unstable coordination between C and I and possibility that C is external to syllable.

4. Formal analysis

4.1 Proposal

Our claim:

The avoidance of *SCI*- clusters arises as a **cumulative markedness effect** deriving from parsing consonants external to the syllable, driven by:

- *_G[C|
- *_σ[SC

These constraints can be understood as marked on the basis of sonority (e.g. Clements 1990, note also Krämer, this conference)

- -- SC by Sonority Sequencing Principle
- -- CI by Minimum Sonority Distance

4.2 Constraints

*_{\sign}[CI: Assign a violation to a tautosyllabic obstruent-lateral sequence

Support for *_{\sigma}[Cl

- A historic sound change in Italo-Romance caused lenition of /l/ to [j] following an obstruent (Maiden 1995, Krämer 2009).
- Evidenced in Faschian (but not other Ladin varieties) in 19th c. (Salvi 2016)
 - [fiˈɔk] 'flake' (snowflake) < floccum (Latin), [kiˈau] 'key' < clavis (Latin)
 - Cl clusters are nevertheless represented in the lexicon of the present-day language
- In Campidanese, /I/ → [r] in CI clusters (Frigeni 2009), interpreted as support for a markedness relationship CI > Cr in onset (Baertsch & Davis 2009)
 - [prus] 'more' < plus (Latin)

4.2 Constraints

- $*_{\sigma}$ [SC: Assign a violation to a tautosyllabic sibilant-obstruent sequence
 - After Coetzee (2004)
 - OCP restrictions in English morphemes involving SC sequences provide cross-linguistic support (Davis 1991, Lamontagne 1993, Coetzee 2004).

Parse: Assign a violation to any segment that is not parsed into a syllable

 Cf. Prince & Smolensky (1993/2004) but with proviso that unparsed segments are nevertheless pronounced.

4.2 Constraints

MParse: Assign a violation to null realization. (Prince & Smolensky 1993/2004)

- The Null Parse (⊙) is a candidate, representing no structural realization (Prince & Smolensky 1993/2004; see also Albright 2012).
- The Null Parse incurs a single violation of MParse only (see Wolf and McCarthy 2009 for detailed discussion).
- The effect of MParse is as follows:

	Input	Markedness	MParse
a.	cand a	*	
b.	0		*

- The analysis is couched in Harmonic Grammar (HG; Legendre, Miyata & Smolensky 1990; Pater 2016.)
 - Each constraint has a weight
 - The harmony score of a candidate (H): violations of each constraint are multiplied by its weight, and then all the products are summed.

A probabilistic version of HG, Maxent HG (Goldwater and Johnson 2003;
 Hayes & Wilson 2008, etc.), can be used to fit gradience in the lexicon in

future work.

Input	C1	C2	
weight	2	1	Н
☞ cand a		-1	-1
cand b	-1		-2

Cumulative markedness via multiple violations of one constraint

Input	C1	C2	
weight	3	2	Н
☞ cand a	-1		-3
cand b		-2	-4

- candidate a violates a constraint with greater weight
- but candidate b has a lower harmony score due to multiple violations of a lower-weighted constraint

• CI- input

	/ple/	Max-IO	Ident[cons]	MParse	* _{\sigma} [CI	* _o [SC	Parse	
	weight	5	5	3	3	3	2	н
☞ a.	p _σ [le						-1	-2
b.	_σ [ple				-1			-3
C.	_σ [pje		-1					-5
d.	0			-1				-3

• SC- input

	/sp/	Max-IO	Ident[cons]	MParse	* _σ [CI	* _o [SC	Parse	
	weight	5	5	3	3	3	2	н
☞ a.	s _o [pe						-1	-2
b.	_σ [spe					-1		-3
C.	_σ [pe	-1						-5
d.	0			-1				-3

• SCI- input

	/sple/	Max-IO	Ident[cons]	MParse	* _σ [CI	* _o [SC	Parse	
	weight	5	5	3	3	3	2	Н
☞ a.	0			-1				-3
b.	$sp_{\sigma}[le$						-2	-4
C.	s _o [ple				-1		-1	-5
d.	$_{\sigma}$ [sple				-1	-1		-6

4.4 Summary

- We employed two constraints, $*_{\sigma}[SC-$ and $*_{\sigma}[Cl-$, to drive consonants to be structurally organized external to the syllable in Ladin;
- SCI- is avoided by a cumulative markedness effect involving Parse.

Alternative approach to structure of SC:

SC is a complex segment with branching place/stricture (Selkirk 1982, Lamontagne 1993)

- Avoids needs to make an exception for SC with respect to sonority sequencing
- Predicts SC voicing identity
- But SC as a complex segment does not fit with the findings of our acoustic study

SC as complex segment: Also faces duplication problems in Moenat Ladin

1. Voicing

- Sibilants assimilate in voicing with any consonant, including sonorants
 - Exx. [zmaus] 'butter'; [zlon'dʒar] 'to make longer'
- Sibilant-sonorant (S+son) sequences are not receptive to analysis as a complex segment:
 - in Moenat, S and sonorants potentially differ in any feature besides [voice] and [consonantal].
- Voicing assimilation must therefore be independently enforced in S+son sequences, duplicating sources of voicing agreement in SX clusters.

SC as complex segment: Also faces duplication problems in Moenat Ladin

2. Free combination

- If SCs were complex segments, we could expect them to be limited in number or restricted in place of articulation.
- However, the set of SCs in Ladin is precisely that which would arise from every combination of S plus obstruent stop or non-sibilant fricative, as derived in a cluster treatment (excepting the SD gap).
- Furthermore, word-initial S can occur before every sonorant consonant, suggesting that sibilants combine freely with any following nonsibilant consonant, subject to voicing agreement.

5. Future Research

Examine other languages where SCX clusters are restricted to a subset of what would be derived from freely combining all permissible SC and CX clusters (Goad 2011).

- English: ✓ [sk], ✓ [kl] but X [skl] (except loans)
- Greek: ✓ [sx], ✓ [xr] but X [sxr]

Thank you